头像

Cyan

四川成都

深度强化学习炼丹师

信息学竞赛模板(十三)— 图论

信息学竞赛模板(十三)— 图论

2021-04-17 · 593次阅读 · 原创 · 数据结构与算法

1 单源最短路径

1.1 Dijkstra算法

只能计算非负权值,时间复杂度 O(n2)O(n^2),模板如下:

#include<iostream> #include<cstring> using namespace std; const int N = 3010; //最大节点数 int a[N][N], d[N], n, m; // n 个节点, m条边 bool v[N]; void dijkstra() { memset(d, 0x3f, sizeof(d)); memset(v, false, sizeof(v)); d[1] = 0; for (int i = 1; i < n; i++) { //走 n-1 次,到达终点 int x = 0; //找到未标记节点中 dist 最小的 for (int j = 1; j <= n; j++) { if (!v[j] && (x == 0 || d[j] < d[x])) x = j; } v[x] = true; //用全局最小值点 x 更新其他节点 for (int y = 1; y <= n; y++) d[y] = min(d[y], d[x] + a[x][y]); } } int main() { cin >> n >> m; memset(a, 0x3f, sizeof(a)); for (int i = 1; i <= n; i++) a[i][i] = 0; for (int i = 1; i <= m; i++) { int x, y, z; scanf("%d%d%d", &x, &y, &z); a[x][y] = min(a[x][y], z); } dijkstra(); for (int i = 1; i <= n; i++) cout << d[i] << " "; puts(""); return 0; }

1.2 Dijkstra算法(优先队列)

优先队列优化版本,复杂度O(mlogn)O(m \log n)

#include<iostream> #include<cstring> #include<queue> using namespace std; typedef pair<int, int> PII; const int N = 1e5 + 10, M = 1e6 + 10; int head[N], ver[M], edge[M], Next[M], d[N]; bool v[N]; int n, m, tot; void add(int x, int y, int z) { ver[++tot] = y; edge[tot] = z; Next[tot] = head[x]; head[x] = tot; } void dijkstra() { memset(d, 0x3f, sizeof d); memset(v, false, sizeof v); d[1] = 0; priority_queue<PII, vector<PII>, greater<PII>> q; //小根堆 q.push(make_pair(0, 1)); while (q.size()) { int x = q.top().second; q.pop(); if (v[x]) continue; v[x] = true; for (int i = head[x]; i; i = Next[i]) { int y = ver[i], z = edge[i]; if (d[y] > d[x] + z) { d[y] = d[x] + z; q.push(make_pair(d[y], y)); } } } } int main() { cin >> n >> m; for (int i = 1; i <= m; i++) { int x, y, z; scanf("%d%d%d", &x, &y, &z); add(x, y, z); } dijkstra(); for (int i = 1; i <= n; i++) printf("%d ", d[i]); puts(""); return 0; }

1.3 Bellman-Ford算法

可以计算负权。常用于限制走几条边的最短路问题。时间复杂度 O(nm)O(nm)

#include <cstring> #include <iostream> #include <algorithm> using namespace std; const int N = 510, M = 10010; int n, m, k; int d[N]; int last[N]; struct Edge { int a, b, c; } edges[M]; void bellman_ford() { memset(d, 0x3f, sizeof d); d[1] = 0; for (int i = 0; i < k; i++) { memcpy(last, d, sizeof d); for (int j = 0; j < m; j++) { auto e = edges[j]; d[e.b] = min(d[e.b], last[e.a] + e.c); } } } int main() { scanf("%d%d%d", &n, &m, &k); for (int i = 0; i < m; i++) { int a, b, c; scanf("%d%d%d", &a, &b, &c); edges[i] = {a, b, c}; } bellman_ford(); if (d[n] > 0x3f3f3f3f / 2) puts("impossible"); else printf("%d\n", d[n]); return 0; }

1.4 Spfa算法

可计算负权,平均时间复杂度为O(m)O(m),最坏时间复杂度 O(nm)O(nm)

#include<iostream> #include<cstring> #include<cstdio> #include<queue> using namespace std; const int N = 100010, M = 1000010; int head[N], ver[M], Next[M], edge[M], d[N]; bool v[N]; int n, m, tot; queue<int> q; void add(int x, int y, int z) { ver[++tot] = y; edge[tot] = z; Next[tot] = head[x]; head[x] = tot; } void spfa() { memset(v, false, sizeof(v)); memset(d, 0x3f, sizeof(d)); //是否在队列中 d[1] = 0; v[1] = true; q.push(1); while (q.size()) { //取出队头 int x = q.front(); q.pop(); v[x] = false; //节点 x 已经不在队列了 //扫描所有出边 for (int i = head[x]; i; i = Next[i]) { int y = ver[i], z = edge[i]; if (d[y] > d[x] + z) { //更新,把新的二元组插入堆 d[y] = d[x] + z; if (!v[y]) q.push(y), v[y] = true; } } } } int main() { cin >> n >> m; for (int i = 0; i < m; i++) { int x, y, z; scanf("%d%d%d", &x, &y, &z); add(x, y, z); } spfa(); for (int i = 1; i <= n; i++) cout << d[i] << " "; puts(""); return 0; }


2 任意两点间的最短距离

Floyd 算法

基于动态规划的思想,时间复杂度 O(n3)O(n^3)

#include<iostream> #include<cstring> #include<cstdio> using namespace std; const int N = 310; int d[N][N], n, m; int main() { memset(d, 0x3f, sizeof(d)); cin >> n >> m; for (int i = 1; i <= n; i++) d[i][i] = 0; for (int i = 1; i <= m; i++) { int x, y, z; scanf("%d%d%d", &x, &y, &z); d[x][y] = min(d[x][y], z); } //floyd 求任意两点间的最短路径 for (int k = 1; k <= n; k++) { for (int i = 1; i <= n; i++) { for (int j = 1; j <= n; j++) { d[i][j] = min(d[i][j], d[i][k] + d[k][j]); } } } //结果输出 for (int i = 1; i <= n; i++) { for (int j = 1; j <= n; j++) { cout << d[i][j] << " "; } puts(""); } return 0; }


3 最小生成树

3.1 Kruskal 算法

时间复杂度 O(mlogm)O(m \log m)

#include<bits/stdc++.h> using namespace std; const int N = 1e5 + 5, M = 2e5 + 5; struct Edge { int x, y, z; bool operator<(const Edge &b) { //重载比较运算,较小的边优先级高 return z < b.z; } }; int m, n, fa[N]; Edge edge[M]; //并査集 int find(int x) { if (x == fa[x]) return x; return fa[x] = find(fa[x]); } int main() { cin >> n >> m; for (int i = 1, x, y, z; i <= m; i++) { scanf("%d%d%d", &x, &y, &z); edge[i] = {x, y, z}; } //初始化并査集 for (int i = 1; i <= n; i++) fa[i] = i; //对边集排序,权值小的边优先级高 sort(edge + 1, edge + m + 1); int ans = 0, cnt = 0; for (int i = 1; i <= m; i++) { int x = find(edge[i].x); int y = find(edge[i].y); if (x == y) continue; //若两个顶点在同一集合,则不使用该条边 cnt++; //边数++ fa[x] = y; //将两点所在集合合并为同一集合 ans += edge[i].z; //最小生成树的权增加 } if (cnt == n - 1) cout << ans << endl; //边数为顶点数量减一,则为最小生成树 else puts("impossible"); //不为最小生成树 return 0; }

3.2 Prim 算法

主要用于稠密图,尤其是完全图的最小生成树求解。时间复杂度 O(n2)O(n^2)

#include<bits/stdc++.h> using namespace std; const int N = 510, INF = 0x3f3f3f3f; int a[N][N], d[N]; bool v[N]; int n, m; int prim() { int ans = 0; memset(d, 0x3f, sizeof d); memset(v, false, sizeof v); for (int i = 1; i <= n; i++) { int x = 0; for (int j = 1; j <= n; j++) { //找到还未访问过的从当前集合的节点中能到达的最近节点 if (!v[j] && (x == 0 || d[j] < d[x])) x = j; } if (x > 1 && d[x] == INF) return INF; //非第一个节点到当前集合的距离若为无穷,则说明至少有两个连通分量,则不存在最小生成树 if (x > 1) ans += d[x]; //非第一个进入集合需要加上边权 v[x] = true; //访问过的标记 for (int j = 1; j <= n; j++) { //更新当前集合所能到达的顶点的最短距离 d[j] = min(d[j], a[x][j]); } } return ans; } int main() { cin >> n >> m; memset(a, 0x3f, sizeof a); for (int i = 1; i <= n; i++) a[i][i] = 0; for (int i = 0, x, y, z; i < m; i++) { scanf("%d%d%d", &x, &y, &z); a[x][y] = a[y][x] = min(a[x][y], z); } int res = prim(); if (res == INF) puts("impossible"); else cout << res << endl; return 0; }


4 负环判断

Spfa 算法

最坏时间复杂度O(nm)O(nm)

#include<bits/stdc++.h> using namespace std; const int N = 1e5 + 10; int head[N], ver[N], edge[N], Next[N], tot; int n, m; int d[N], cnt[N]; bool v[N]; void add(int x, int y, int z){ ver[++tot] = y; edge[tot] = z; Next[tot] = head[x]; head[x] = tot; } bool spfa(){ queue<int> q; for (int i = 1; i <= n; i ++ ){ v[i] = true; q.push(i); } while(q.size()){ int x = q.front(); q.pop(); v[x] = false; for(int i = head[x]; i; i = Next[i]){ int y = ver[i], z = edge[i]; if(d[y] > d[x] + z){ d[y] = d[x] + z; cnt[y] = cnt[x] + 1; if(cnt[y] >= n) return true; if(!v[y]) { q.push(y); v[y] = true; } } } } return false; } int main(){ cin >> n >> m; for(int i = 1; i <= m; i++){ int x, y, z; scanf("%d%d%d", &x, &y, &z); add(x, y, z); } if(spfa()) puts("Yes"); else puts("No"); return 0; }

5 拓扑排序

时间复杂度 O(n+m)O(n+m)

#include<bits/stdc++.h> using namespace std; const int N = 1e5 + 5; int n, m; int head[N], Next[N], ver[N], tot, deg[N]; vector<int> ans; //保存拓扑序列答案 void add(int x, int y) { ver[++tot] = y; Next[tot] = head[x]; head[x] = tot; } void topSort() { //广搜求拓扑序列 queue<int> q; for (int i = 1; i <= n; i++) { if (deg[i] == 0) q.push(i); //入度为0则入队 } while (q.size()) { auto now = q.front(); q.pop(); ans.push_back(now); //出队即进入答案序列 for (int i = head[now]; i; i = Next[i]) { //遍历当前节点的所有邻接节点 int y = ver[i]; if (--deg[y] == 0) q.push(y); //入度为0则入队 } } } int main() { cin >> n >> m; for (int i = 1, x, y; i <= m; i++) { scanf("%d%d", &x, &y); add(x, y); deg[y]++; //入度+1 } topSort(); if (n == ans.size()) { for (auto x:ans) printf("%d ", x); puts(""); } else puts("-1"); //存在环,无拓扑序列 return 0; }


6 最近公共祖先

  • 距离:两点之间的距离
const int N = 1e4 + 5, M = 2e4 + 5, Deep = 14; int head[N], ver[M], Next[M], edge[M], tot; int depth[N], fa[N][Deep], dist[N][Deep]; int n, m; void add(int x, int y, int z){ ver[++tot] = y; edge[tot] = z; Next[tot] = head[x]; head[x] = tot; } void bfs(){ memset(depth, 0x3f, sizeof depth); depth[0] = 0; depth[1] = 1; queue<int> q; q.push(1); while(q.size()) { int x = q.front(); q.pop(); for(int i = head[x]; i; i = Next[i]) { int y = ver[i], z = edge[i]; if(depth[y] <= depth[x] + 1) continue; //访问过 depth[y] = depth[x] + 1; q.push(y); fa[y][0] = x; dist[y][0] = z; fir(k, 1, Deep - 1) { fa[y][k] = fa[fa[y][k - 1]][k - 1]; dist[y][k] = dist[y][k - 1] + dist[fa[y][k - 1]][k - 1]; } } } } int lca(int x, int y){ int res = 0; if(depth[x] < depth[y]) swap(x, y); rif(k, Deep - 1, 0) { if(depth[fa[x][k]] >= depth[y]) { res += dist[x][k]; x = fa[x][k]; } } if(x == y) return res; rif(k, Deep - 1, 0) { if(fa[x][k] > 0 && fa[x][k] != fa[y][k]) { res += dist[x][k] + dist[y][k]; x = fa[x][k]; y = fa[y][k]; } } res += dist[x][0] + dist[y][0]; return res; }

7 图的相关定义

图的相关定义-1

图的相关定义-2

图的相关定义-3

图的相关定义-4

图的相关定义-5


标题: 信息学竞赛模板(十三)— 图论
链接: https://www.fightingok.cn/detail/82
更新: 2023-03-13 09:06:05
版权: 本文采用 CC BY-NC-SA 3.0 CN 协议进行许可